Groups of automorphisms of almost Kaehler manifolds
نویسندگان
چکیده
منابع مشابه
Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملSome properties of marginal automorphisms of groups
AbstractLet W be a non-empty subset of a free group. The automorphism of a group G is said to be a marginal automorphism, if for all x in G,x^−1alpha(x) in W^*(G), where W^*(G) is the marginal subgroup of G.In this paper, we give necessary and sufficient condition for a purelynon-abelian p-group G, such that the set of all marginal automorphismsof G forms an elementary abelian p-group.
متن کاملGroups of Automorphisms of Null-entropy of Hyperkähler Manifolds
The following two results are proven: The full automorphism group of any non-projective hyperkähler manifold M is almost abelian of rank at most maximum of ρ(M) − 1 and 1. Any groups of automorphisms of nullentropy of a projective hyperkähler manifold M is almost abelian of rank at most ρ(M) − 2. A few applications for K3 surfaces are also given.
متن کاملAutomorphisms of manifolds
This survey is about homotopy types of spaces of automorphisms of topological and smooth manifolds. Most of the results available are relative, i.e., they compare different types of automorphisms. In chapter 1, which motivates the later chapters, we introduce our favorite types of manifold automorphisms and make a comparison by (mostly elementary) geometric methods. Chapters 2, 3, and 4 describ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1960
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1960-10421-1